Radio-frequency identification RFID is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. An RFID tag is an object that can be applied to or incorporated into a product, animal, or person for the purpose of identification using radio waves. Some tags can be read from several meters away and beyond the line of sight of the reader.
Radio-frequency identification (RFID) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders.
An RFID tag is an object that can be applied to or incorporated into a product, animal, or person for the purpose of identification using radio waves. Some tags can be read from several meters away and beyond the line of sight of the reader.
Most RFID tags contain at least two parts. One is an integrated circuit for storing and processing information, modulating and demodulating a (RF) signal, and other specialized functions. The second is an antenna for receiving and transmitting the signal. Chipless RFID allows for discrete identification of tags without an integrated circuit, thereby allowing tags to be printed directly onto assets at a lower cost than traditional tags.
Today, RFID is used in enterprise supply chain management to improve the efficiency of inventory tracking and management. However, growth and adoption in the enterprise supply chain market is limited because current commercial technology does not link the indoor tracking to the overall end-to-end supply chain visibility. Coupled with fair cost-sharing mechanisms, rational motives and justified returns from RFID technology investments are the key ingredients to achieve long-term and sustainable RFID technology adoption.
RFID tags
RFID tags come in three general varieties:- passive, active, or semi-passive (also known as battery-assisted). Passive tags require no internal power source, thus being pure passive devices (they are only active when a reader is nearby to power them), whereas semi-passive and active tags require a power source, usually a small battery.
Passive
Passive RFID tags have no internal power supply. The minute electrical current induced in the antenna by the incoming radio frequency signal provides just enough power for the CMOS integrated circuit in the tag to power up and transmit a response. Most passive tags signal by backscattering the carrier wave from the reader. This means that the antenna has to be designed both to collect power from the incoming signal and also to transmit the outbound backscatter signal. The response of a passive RFID tag is not necessarily just an ID number; the tag chip can contain non-volatile data, possibly writable EEPROM for storing data.
Active
Unlike passive RFID tags, active RFID tags have their own internal power source, which is used to power the integrated circuits and to broadcast the response signal to the reader. Communications from active tags to readers is typically much more reliable (i.e. fewer errors) than from passive tags due to the ability for active tags to conduct a "session" with a reader.
Semi-passive
Semi-passive tags are similar to active tags in that they have their own power source, but the battery only powers the microchip and does not power the broadcasting of a signal. The response is usually powered by means of backscattering the RF energy from the reader, where energy is reflected back to the reader as with passive tags. An additional application for the battery is to power data storage.
Crystal Oscillator
A crystal oscillator is an electronic circuit that produces electrical oscillations at a particular designed frequency determined by the physical characteristics of one or more crystals generally of quartz positioned in the circuit feedback loopThe Essential Role of Load Break Switches in High Voltage Power Systems
Load break switches play a crucial role in the control and safety of electrical power systems, particularly at high voltage levels. These switches are designed to safely interrupt the flow of electricity, allowing for maintenance or emergency handling without causing damage to the system or danger to personnel. With the ability to handle several hundred thousand volts, load break switches are a key component in ensuring the reliability and efficiency of power distribution.Use of LED and Photodiode in Pulse Oximetry
Pulse-oximetry technology was available in 1930's it became easily available only in the 1980's with advances in the Light Emitting Diode (LED) microprocessors, optical plethysmography and spectro-photometry. Today pulse-oximetry provides a simple, non-invasive, portable and inexpensive method to continuously monitor oxygen saturation and heart rate with good accuracy