This is a type of double-A or double wishbone suspension. The wheel spindles are supported by an upper and lower 'A' shaped arm. In this type, the lower arm carries most of the load. If you look head-on at this type of system, what you'll find is that it's a very parallelogram system that allows the spindles to travel vertically up and down.
The following three examples are all variations on the same theme.
Coil Spring type 1
This is a type of double-A or double wishbone suspension. The wheel spindles are supported by an upper and lower 'A' shaped arm. In this type, the lower arm carries most of the load. If you look head-on at this type of system, what you'll find is that it's a very parallelogram system that allows the spindles to travel vertically up and down. When they do this, they also have a slight side-to-side motion caused by the arc that the wishbones describe around their pivot points. This side-to-side motion is known as scrub. Unless the links are infinitely long the scrub motion is always present. There are two other types of motion of the wheel relative to the body when the suspension articulates. The first and most important is a toe angle (steer angle). The second and least important, but the one which produces most pub talk is the camber angle, or lean angle. Steer and camber are the ones which wear tyres.
Coil Spring type 2
This is also a type of double-A arm suspension although the lower arm in these systems can sometimes be replaced with a single solid arm (as in my picture). The only real difference between this and the previous system mentioned above is that the spring/shock combo is moved from between the arms to above the upper arm. This transfers the load-bearing capability of the suspension almost entirely to the upper arm and the spring mounts. The lower arm in this instance becomes a control arm. This particular type of system isn't so popular in cars as it takes up a lot room.
Multi-link suspension
This is the latest incarnation of the double wishbone system described above. It's currently being used in the Audi A8 and A4 amongst other cars. The basic principle of it is the same, but instead of solid upper and lower wishbones, each 'arm' of the wishbone is a separate item. These are joined at the top and bottom of the spindle thus forming the wishbone shape. The super-weird thing about this is that as the spindle turns for steering, it alters the geometry of the suspension by torquing all four suspension arms. They have complex pivot systems designed to allow this to happen. Car manufacturers claim that this system gives even better road-holding properties, because all the various joints make the suspension almost infinitely adjustable. There are a lot of variations on this theme appearing at the moment, with huge differences in the numbers and complexities of joints, numbers of arms, positioning of the parts etc. but they are all fundamentally the same. Note that in this system the spring (red) is separate from the shock absorber (yellow).
Find out more aboutVolvo control arm China manufacturer by visit lemdor.com.
How to Change the Sway bar bushing and sway bar endlink on new beetle (1)
The sway bar (sometimes called anti roll bar) connects the left and right suspension to the front subframe. There are bushings on the middle and ends (end links). Your VW TDI only has a sway bar in the front, there is no sway bar in the rear because it's a torsion beam suspension.How to Change the Sway Bar Bushing and Sway Bar Endlink on New Beetle (2)
Raise the front end of the car, chock the rear wheels, remove the front wheels, rest the car on jack stands, and make sure the car is safe and secure before getting underneath at all, see the TOS Agreement for the legal disclaimer.The Working Principle of Independent Front Suspension (4)
Overall, with the vast plethora of Mustang II-style IFS kits ranging from basic budget setups to fully polished showpieces on the market today, there is very little reason to go with a used Camaro front clip.